
Testing Agility in the Cloud:
The 4Cs Framework

 Sumit Mehrotra

Implement UI Testing without

Shooting Yourself in the Foot
Gojko Adzik

Get Automated Testing “Done”
Hans Buwalda & Subu Baskaran

Cruise Control: Automation in

Performance Testing
Tim Hinds

Test Automation: The backbone

of Continuous Delivery
Ranjan Sakalley

2 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

E
very year, LogiGear Magazine devotes one full issue to Test
Automation. We could do more than one, and perhaps even

that would not be enough.

The problems around automation have become increasingly
complex. And now, automation is much more integrated into the
software development process. For over a decade teams have been
faced with “do more with less”: do more testing, do more
automation, and do it all with less staff. Then Agile/Scrum came
along and we had to automate it faster. As the XP practice of
continuous integration (CI) caught fire, our automation suites –
smoke tests and full regression suites – got integrated into the

autobuild development process, which in most cases was out of our control. Other people
and tools are now running our automation and reporting back results – not by us kicking off

automation when we choose to, but whenever a build takes place.

Today this process is moving at an even more extreme pace and further away from us. We
see CI moving onto virtual machines and DevOps running our automation all the time

(continuous testing), on all kinds of environments.

Many teams are still struggling with getting automated test into their current sprints, or
Sprint +1 (getting new functionality automated, but only in the sprint following that
function’s development). Some teams struggle just to get more tests automated in their
development cycle at all, and end up settling for adding new automation after a release,
because they just do not have the time. This is not OK. If this is your situation, you need to

fix it. It may not be an easy fix, but not fixing it has a negative impact on development.

What do we have to do?

 First, automate more and automate faster. With shorter cycles, you need automated
tests, or you will never reach levels of coverage acceptable enough to have confidence

in your product. Yes, automate faster.

 You need a framework with reusable and low maintenance functions.

 Finally, choose effective methods. We all know the idea that tests need to be low
maintenance. But how do you do that? When you have a big suite of tests and some
break – and not because of application bugs – how do you unbreak the test suite to
run again? Simply automating step-by-step test scripts is a surefire formula for failure.
Instead, choose a more sophisticated method for developing tests, like Action Based

Testing.

Our tests have to be effective at validating functionality and finding bugs or breaks. And

they must be efficient – suites should do this in the minimum number of tests possible.

We know that our tests are going to be run, in most cases these days, across a large matrix
of configurations, browsers, devices, and appliances. In addition, now the tests will more
than likely be run on a variety of build environments. It is becoming increasingly common to
run the same suite of tests on a dev environment, testing environment, user acceptance or
staging environment, and sometimes live/production environments. For some tools and
suites, the performance demands are too great: the tool itself becomes an issue, not just
the suites it runs. I myself have used some tools that develop huge problems running tests

as the number of virtual machines increases. And that is only the start.

Our automation has to get better. But more automation is not always the answer. Today,
the answer must be: better and faster automation. I hope this issue of our magazine gives

you valuable guidance to achieve this.

We’ve also just published our 2016 editorial calendar, to give you an idea of what’s ahead

for next year. As always, if you’d like to submit an article, just let us know.

All of us at LogiGear wish you a joyful and healthy holiday season and a happy new year. We

look forward to continuing to provide you with great software test information in 2016! ■

Editor in Chief

Michael Hackett

Managing Editor

David Rosenblatt

Deputy Editor

Joe Luthy

Worldwide Offices

United States Headquarters

Silicon Valley

4100 E 3rd Ave, Suite 150

Foster City, CA 94404

Tel +1 650 572 1400

Fax +1 650 572 2822

Viet Nam Headquarters

1A Phan Xich Long, Ward 2

Phu Nhuan District

Ho Chi Minh City

Tel +84 8 3995 4072

Fax +84 8 3995 4076

Viet Nam, Da Nang

346 Street 2/9

Hai Chau District

Da Nang

Tel +84 511 3655 333

www.LogiGear.com

www.LogiGear.vn

www.LogiGearmagazine.com

Copyright 2015

LogiGear Corporation

All rights reserved.

Reproduction without

permission is prohibited.

Submission guidelines may be

found at:

http://www.LogiGear.com/

magazine/issue/news/2016-

editorial-calendar-and-

submission-guidelines/

http://www.logigear.com/magazine/issue/news/2016-editorial-calendar-and-submission-guidelines/
http://www.logigear.com/magazine/issue/news/2016-editorial-calendar-and-submission-guidelines/
http://www.logigear.com/magazine/issue/news/2016-editorial-calendar-and-submission-guidelines/
http://www.logigear.com/magazine/issue/news/2016-editorial-calendar-and-submission-guidelines/
http://www.logigear.com/magazine/issue/news/2016-editorial-calendar-and-submission-guidelines/

3 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

5
FEATURED BLOGGER: Automation in Performance Testing
For performance testing, be smart about what and how you automate

 Tim Hinds

8
Implement UI Testing without Shooting Yourself in the Foot
How to do UI test automation with the fewest headaches

 Gojko Adzic

13
Get Automated Testing “Done”
How to fit automated test into scrum, and keep testers in sync with other teams

 Hans Buwalda &

 Subu Baskaran

COVER STORY: Testing Agility in the Cloud: the 4Cs Framework
Questions to ask when implementing an Agile SDLC

 Sumit Mehrotra

 2 Letter from the Editor

 4 In the News (including our 2016 editorial calendar)

 7 Infographic: Pitfalls of Testing Automation Efforts

 14 Further Reading: Related articles from past issues of LogiGear Magazine

 15 Mind Map: Tools to Help You in Testing

 25 Glossary: Terms of relevance to this issue

 31 Calendar of Events: Upcoming test conferences

50 Quick Ideas to Improve Your Tests
A review of the new book by Gojko Adzic, David Evans and Tom Roden. 30

 Marcus Hammarberg

26
Why is test automation the backbone of Continuous Delivery?
The path to continuous delivery leads through automation

 Ranjan Sakalley

16

4 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

GOOGLE WORKING TO GET ANDROID UNDER CONTROL

In an effort to take on the issue of fragmentation – one of the most vexing problems

with Android – Google is negotiating deals with chipmakers, The Information reports.

By working directly with chip partners who implement its designs, Google plans to cre-

ate hardware that works seamlessly with Android, just as Apple products do with iOS.

According to one estimate, there are over 18,700 distinct versions of Android,

compared to Apple’s five or six. This fragmentation of the Android ecosystem has

become a major headache for Google, not to mention phone makers and testers. By

exerting more control over the Android world, Google would not only make life easier

for everyone, but also be in a better position to offer new features more rapidly.

 Source: eWeek Why Google Might Want to Design Chips for Android Phones

WHY PERFORMANCE TESTING MATTERS

Discount retailer Target Corp's website was down due to heavy traffic on Cyber Monday.

Shoppers looking for bargains on the target.com website were greeted with the

message: "So sorry, but high traffic is causing delays. If you wouldn't mind holding, we'll

refresh automatically & get things going ASAP."

The retailer wasn’t alone in glitches during the high profile shopping holiday. Other

websites with outages included Victoria's Secret and Foot Locker.

 Source: Reuters Target website down on Cyber Monday traffic

LOGIGEAR MAGAZINE 2016 EDITORIAL CALENDAR

LogiGear Magazine has just released its editorial calendar for 2016. The magazine,

published on a quarterly basis, dedicates each edition to a particular theme, one of

relevance to the dynamic field of software QA. Our plan for 2016:

March Test strategy & methods; Test design

June Testing in the new world of DevOps

September Testing SMAC down (social, mobile, analytics & cloud)

December Riding the new development paradigm wave; Trends in test

We welcome content from seasoned as well as new authors, QA experts, test engineers and anyone who would like to

share their knowledge and insights with the wider software test community. Submitted articles may be original works or

ones previously posted on blogs, websites or newsletters, as long as you, the author, hold the rights to have such content

published by us.

 Please see our Detailed editorial calendar and submission guidelines at

http://www.logigear.com/magazine/issue/news/2016-editorial-calendar-and-submission-guidelines/

https://www.theinformation.com/with-apple-in-mind-google-seeks-android-chip-partners?unlock=8691ed&token=5acfb15da9e84adfc4f0a263b91e9d83a98a0263
http://www.eweek.com/mobile/why-google-might-want-to-design-chips-for-android-phones.html
https://en.wikipedia.org/wiki/Cyber_Monday
http://www.target.com
http://www.victoriassecret.com
http://www.footlocker.com
http://www.reuters.com/article/us-usa-holidayshopping-target-idUSKBN0TJ1WZ20151130#h0RxGeRudHhQGaf3.99
http://www.logigear.com/magazine/issue/news/2016-editorial-calendar-and-submission-guidelines/

5 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

Listen closely to the background hum of any agile shop, and

you’ll likely hear this ongoing chant: Automate! Automate!

Automate! While automation can be incredibly valuable to the

agile process, there are some key things to keep in mind when

it comes to automated performance testing.

Automated performance testing is important for many

different reasons. It allows you to refactor or introduce change

and test for acceptance with virtually no manual effort. You

can also stay on the lookout for regression defects and test for

things that just wouldn’t come up manually. Ultimately,

automated testing should save time and resources, so you can

release code that is bug-free and ready for real-world use.

Recently, I spoke with performance specialist Brad Stoner

about how to fit performance testing into agile development

cycles. This week, we’ll use this blog post to follow up with

greater detail around performance testing automation and

recap which performance tests are good candidates for

automation. After all, automation is an important technique for

any modern performance engineer to master.

Automation Without Direction

Most of the time, automation gets set up without performance

testing in mind. Performance testing is, at best, an

afterthought to the automation process. That leaves you, as a

performance engineer, stuck with some pretty tricky

scenarios. Maybe every test case is a functional use case, and

if you want to adapt them for performance, you have to go

back and modify them for scale or high concurrency. Or per-

haps the data required for a large performance test is never

put together leaving you with a whole new pile of work to do.

Use cases are strung together in an uncoordinated way, so

you have to create another document that describes how to

use existing functional tests to conduct a load test. And of

course, those test cases are stuck on “the happy path”

making sure functionality works properly, so they don’t test

edge cases or stress cases, and therefore, don’t identify

performance defects.

None of these scenarios is desirable, but they can be easily

rectified by incorporating performance objectives into your

automation strategy from the start. You want to plan your

approach to automation intelligently.

What Automation Is – And Isn’t – Good For

You can’t automate everything all the time. If you run daily

builds, you can’t do a massive load test every night. That idea

would be even worse if you build several times a day. Instead,

Cruise Control: Automation

 in Performance Testing

By Tim Hinds

When it comes to performance testing, be

 smart about what and how you automate

http://www.neotys.com/webcast/How-to-Fit-Performance-Testing-into-Agile-Dev-Cycles.html
http://www.neotys.com/webcast/How-to-Fit-Performance-Testing-into-Agile-Dev-Cycles.html

6 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

you’ll have to pick and choose your test cases, mapping out

what you do over periods of time in coordination with the

release cycle for the app.

Too many use cases to cover at a time will kill your

environment. Constantly high traffic patterns are next to

impossible to maintain. Highly specific test scenarios can also

cause difficulty because you may need to adjust performance

tests every time something changes. That’s why it pays to be

smart about what you automate.

Look for a manageable number of tests that can be run

generically and regularly. Then, benchmark those tests. After

that, you can focus your manual time on ad hoc testing,

bottlenecks, or areas under active development. This isolation

will catch a ton of defects before production.

Get Automation Working for You

Automation can be great, but it has to identify performance

defects and alert you. Just like functional tests validate a

defined plan of how an application should behave,

performance tests should validate your application’s service

level agreement. Define the tests in which you want to

leverage automation. Is it for workload capacity? Or are you

looking for stress, duration, and soak tests? Will you automate

to find defects on the front end?

It’s easy to automate these problems, and you can do it at a

low cost. You’ll want to establish benchmarks and baselines

often to see if performance degrades as applications are

further developed. Testing with direction means that you don’t

test just for the sake of testing. You always test with a purpose

and motive: to find and isolate performance defects. This is a

critical thing to do as a performance engineer because you’re

always dealing with pushing the envelope of the application.

You need to know where that boundary lies.

Get Ready for Smooth Sailing

Automated performance testing can be a huge time saver. To

make the most of that time-saving potential, you want to do it

right. Work smart by always testing with purpose. Ready to

dive even deeper into these topics? Jump right in and check

out the full webcast here where we go into greater detail about

automation strategies. You can also learn how Neotys can

help you with the overall agile performance testing cycle.■

Tim Hinds is the Product Marketing

Manager for NeoLoad at Neotys. He

has a background in Agile software

development, Scrum, Kanban,

Continuous Integration, Continuous

Delivery, and Continuous Testing

practices.

This article originally appeared in NEOTYS BLOG .

For more on this, check out Tim Hinds’ and Brad Stoner’s webinar,

How to Fit Performance Testing into Agile Dev Cycles:

http://www.neotys.com/webcast/How-to-Fit-Performance-Testing-into-Agile-Dev-Cycles.html
http://www.neotys.com/introduction/agile-testing.html
http://www.neotys.com/blog/automation-in-performance-testing/
http://www.neotys.com/blog/
https://www.youtube.com/watch?v=s1Zh7RsHCMQ
https://www.youtube.com/watch?v=s1Zh7RsHCMQ
https://www.youtube.com/watch?v=s1Zh7RsHCMQ

8 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

How to do UI test automation with the fewest headaches

I
’m currently interviewing lots of teams that have

implemented acceptance testing for my new

book. A majority of those interviewed so far have

at some point shot themselves in the foot with UI test

automation. After speaking to several people who

are about to do exactly that at the Agile Acceptance

Testing Days in Belgium a few weeks ago, I’d like to

present what I consider a very good practice for how

to do UI test automation efficiently.

I’ve written against UI test automation several times

so far, so I won’t repeat myself. However, many

teams I interviewed seem to prefer UI level

automation, or think that such level of testing is nec-

essary to prove the required business functionality.

Almost all of them have realized six to nine months

after starting this effort that the cost of maintaining

UI level tests is higher than the benefit they bring.

Many have thrown away the tests at that point and

effectively lost all the effort they put into them. If you

have to do UI test automation (which I’d challenge in

the first place), here is how do go about doing it so

that the cost of maintenance doesn’t kill you later.

Three levels of UI test automation

A very good idea when designing UI level functional

tests is to think about describing the test and the

automation at these three levels:

 Business rule/functionality level: what is this test

demonstrating or exercising? For example: Free

delivery is offered to customers who order two or

more books.

 User interface workflow level:

what does a user have to do to

exercise the functionality through

the UI, on a higher activity

level? For example, put two

books in a

By Gojko Adzic

How to Implement UI Testing without

Shooting Yourself in the Foot

shopping cart, enter address details, verify that

delivery options include free delivery.

 Technical activity level: what are the technical

steps required to exercise the functionality? For

example, open the shop homepage, log in with

“testuser” and “testpassword”, go to the

“/book” page, click on the first image with the

“book” CSS class, wait for page to load, click on

the “Buy now” link… and so on.

At the point where they figured out that UI testing is

not paying off, most teams I interviewed were

describing tests at the technical level only (an

extreme case of this are recorded test scripts,

where even the third level isn’t human readable).

Such tests are very brittle, and many of them tend

to break with even the smallest change in the UI.

The third level is quite verbose as well, so it is often

hard to understand what is broken when a test

9 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

fails. Some teams were describing tests at the

workflow level, which was a bit more stable. These

tests weren’t bound to a particular layout, but they

were bound to user interface implementation. When

the page workflow changes, or when the underlying

technology changes, such tests break.

Before anyone starts writing an angry comment about

the technical level being the only thing that works, I

want to say: Yes, we do need the third level. It is

where the automation really happens and where the

test exercises our web site. But there are serious

benefits to not having only the third level.

The stability in acceptance tests comes from the fact

that business rules don’t change as much as

technical implementations. Technology moves much

faster than business. The closer your acceptance

tests are to the business rules, the more stable they

are. Note that this doesn’t necessarily mean that

these tests won’t be executed through the user

interface – just that they are defined in a way that is

not bound to a particular user interface.

The idea of thinking about these different levels is

good because it allows us to write UI-level tests that

are easy to understand, efficient to write and

relatively inexpensive to maintain. This is because

there is a natural hierarchy of concepts on these

three levels. Checking that delivery is available for

two books involves putting a book in a shopping cart.

Putting a book in a shopping cart involves a sequence

of technical steps. Entering address details does as

well. Breaking things down like that and combining

lower level concepts into higher level concepts has

the benefit of reducing the cognitive load and

promoting reuse.

Easy to understand

From the bottom up, the clarity of the test increases.

At the technical activity level, tests are very technical

and full of clutter – it’s hard to see the forest for the

trees. At the user interface workflow level, tests

describe how something is done, which is easier to

understand but still has too much detail to efficiently

describe several possibilities. At the business rule

level, the intention of the test is described in a

relatively terse form. We can use that level to

effectively communicate all different possibilities in

important example cases. It is much more efficient to

give another example as “Free delivery is not offered

to customers who have one book” than to talk about

logging in, putting only a single book in a cart,

checking out, etc. I’m not even going to mention how

much cognitive overload a description of that same

thing would require if we were to talk about clicking

check boxes and links.

Efficient to write

From the bottom up, the technical level of tests

decreases. At the technical activity level, you need

people who understand the design of a system, HTTP

calls, DOM and such to write the test. To write tests at

the user interface workflow level, you only need to

understand the web site workflow. At the business

rule level, you need to understand what the business

rule is. Given a set of third-level components (e.g.,

login, adding a book), testers who are not automation

specialists and business users can happily write the

definition of second level steps. This allows them to

engage more efficiently during development and

10 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

reduce the automation load on developers.

More importantly, the business rule and the workflow

level can be written before the UI is actually there.

Tests at these levels can be written before the

development starts, and be used as guidelines for

development and as acceptance criteria to verify the

output.

Relatively inexpensive to maintain

The business rule level isn’t tied to any particular web

site design or activity flow, so it remains stable and

unchanged during most web user interface changes,

be it layout or workflow improvements. The user

interface workflow level is tied to the activity workflow,

so when the flow for a particular action changes we

need to rewrite only that action. The technical level is

tied to the layout of the pages, so when the layout

changes we need to rewrite or re-record only the

implementation of particular second-level steps

affected by that (without changing the description of

the test at the business or the workflow level).

To continue with the free delivery example from

above, if the login form was suddenly changed not to

have a button but an image, we only need to re-write

the “login” action at the technical level. From my

experience, it is the technical level where changes

happen most frequently – layout, not the activity

workflow. So by breaking up the implementation into

this hierarchy, we’re creating several layers of

insulation and are limiting the propagation of

changes. This reduces the cost of maintenance

significantly.

Implementing this in practice

There are many good ways to implement

this idea in practice. Most test automa-

tion tools provide one or two levels of

indirection that can be used for this. In

fact, this is why I think Cucumber found

such a sweet spot for browser-based

user interface testing. With Cucumber,

step definitions implemented in a pro-

gramming language naturally sit with de-

velopers and this is where the technical

activity level UI can be described. These

step definitions can then be reused to

create scenarios (user interface workflow

level), and scenario outlines can be used

to efficiently describe tests at the business rule level.

The SLIM test runner for FitNesse provides similar

levels of isolation. The bottom fixture layer sits

naturally with the technical activity level. Scenario

definitions can be used to describe workflows at the

activity level. Scenario tables then present a nice,

concise view at the business rule level.

Robot Framework uses “keywords” to describe tests,

and allows us to define keywords either directly in

code (which becomes the technical level) or by

combining existing keywords (which becomes the

workflow and business rule level).

The Page Object idea from Selenium and WebDriver is

a good start, but stops short of finishing the job. It

requires us to encapsulate the technical activity level

into higher level “page” functionality. These can then

be used to describe business workflows. It lacks the

consolidation of workflows into the top business rule

level — so make sure to create this level yourself in

http://gojko.net/2010/01/05/bdd-in-net-with-cucumber-part-3-scenario-outlines-and-tabular-templates/
https://code.google.com/p/selenium/wiki/PageObjects?redir=1

11 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

the code. (Antony Marcano also raised a valid point that

users think about business activities, not page

functionality during CITCON Europe 09, so page objects

might not be the best way to go anyway).

TextTest works with xUseCase recorders, an interesting

twist on this concept that allows you to record the

technical level of step definitions without having to

program it manually. This might be interesting for

thick-client UIs where automation scripts are not as

developed as in the web browser space.

With Twist, you can record the technical level and it will

create fixture definitions for you. Instead of using that

directly in the test, you can use “abstract concepts” to

combine steps into workflow activities and then use that

for business level testing. Or you can add fixture

methods to produce workflow activities in code.

Beware of programming in text

Looking at UI tests at these three levels is, I think,

generally a good practice. Responsibility for automation

at the user interface level is something that each team

needs to decide depending on their circumstances.

Implementing the workflow level in plain text test scripts

(Robot Framework higher level keywords, Twist abstract

concepts, SLIM scenario tables) allows business people

and testers who aren’t automation specialists to write

and maintain them. For some teams, this is a nice

benefit because developers can then focus on other

things and testers can engage earlier. That does mean,

however, that there is no automated refactoring, syntax

checking or anything like that at the user interface

automation level.

Implementing the workflow level in code enables better

integration and reuse, also giving you the possibility of

implementing things below the UI when that is easier,

without disrupting the higher level descriptions. It does,

however, require people with programming knowledge to

automate that level.

An interesting approach that one team I interviewed had

is to train testers to write code enough to be able to

implement the user activity level in code as well. This

doesn’t require advanced programming knowledge, and

developers are there anyway to help if someone gets

stuck.

Things to remember

To avoid shooting yourself in the foot with UI tests,

remember these things:

 Think about UI test automation at three levels:

business rules, user interface workflow and technical

activity

 Even if the user interface workflow automation gets

implemented in plain text, make sure to put one level

of abstraction above it and describe business rules

directly. Don’t describe rules as workflows (unless

they genuinely deal with workflow decisions – and

even then it’s often good to describe individual

decisions as state machines).

 Even if the user interface workflow automation gets

implemented in code, make sure to sequester tech-

nical activities required to fulfil a step into a separate

layer. Reuse these step definitions to get stability

and easy maintenance later.

 Beware of programming in plain text. ■

Gojko Adzic’s latest book is Fifty Quick Ideas to Improve your Tests.

Please note that readers of LogiGear Magazine are entitled to a 50% discount on the Ebook

version of this book when they use the LogiGear discount code through March 31, 2016.

[Editor’s note: A review of Fifty Quick Ideas to Improve your Tests may be found elsewhere in this

edition of LogiGear Magazine.]

This article originally appeared in the author’s blog, gojko.net.

http://fiftyquickideas.com/fifty-quick-ideas-to-improve-your-tests/
https://leanpub.com/50quickideas-tests/c/logigear
http://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2/
http://gojko.net/

12 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

13 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

Get Automated Testing “Done”

How to fit automated testing into scrum, and keep testers in sync with other teams

One of the benefits of the approaches of agile projects is their friendliness towards testing. The testing activities,

and the testers with it, are integrated into the teams, and testing and quality are redefined as team

responsibilities. Automation nowadays is a must-have that needs to be addressed. Automation happens on

multiple levels in a system, starting with unit tests. Here, we’ll focus on functional tests at the UI level.

By Hans Buwalda and Subu Baskaran

F
or functional tests timely automation can be difficult,

due to UI dependency. A team might be “done” with

work items in a sprint, but the development and

automation of functional tests might not have been finished

yet. Having to do such automation later is unattractive; it

places the testing and automation out of sync with the other

activities in the team, making it harder to cooperate.

A first step to make testing manageable in short sprints is to

use a domain language approach. This can help the whole

team express and communicate tests quickly. We use keyword

based “actions” that are easy to manage, use and implement,

and is supported well with our product TestArchitect™. We

also have a tool to translate actions to and from Behavior

Driven Development (BDD) scenarios, another domain

language approach.

Actions become the basis of the modular test design method

called Action Based Testing (ABT), which organizes the tests

into “test modules”. A main distinction is made in ABT

between modules for “business tests” and for “interaction

tests”. In a business test one would use business level actions

like “rent car” or “check balance”, while in an interaction test

the actions would be at a lower level, like “select menu item”

or “check window exists”.

To get to automated testing “done” in agile sprints we ended

up with a process that is shown in the picture. When the sprint

starts the testers create the higher business level tests. These

tests stay at the same level as the user stories and

acceptance criteria. Further into the sprint, interaction tests

are developed, when the user interfaces have become stable

enough to make it worthwhile.

Also very early in the sprint interface mappings are made. We

recommend that those are created without the use of an

interface viewer or other spy tool. This encourages the team to

define easy to maintain identifying properties for upcoming UI

elements, like the “name” property in Java. This also

encourages better collaboration between QA and Dev teams.

When the UI becomes available, the team is ready with:

 Test Modules

 Business Level Tests

 Interaction Tests

 Interface mappings

 Actions – At this point actions are well thought out and

finalized but not yet automated

14 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

The automation focuses on the actions and only happens

when the UIs become fairly final. (If you follow the approach,

last-minute changes will be accommodated easily).

An additional way to relieve teams and keep automated

testing in sync with development is something we like to call

“Outsourcing 2.0”, which is part of our services offering as a

company. Under this model, excess workload for test

development and automation is handed over to a service

group that can grow and shrink over time, and can service

multiple agile teams. This way the attention of all team

members can be focused on new functionalities.■

Hans Buwalda, CTO of LogiGear, is a pioneer of the Action Based and Soap Opera

methodologies of testing and automation, and lead developer of TestArchitect, LogiGear’s

keyword-based toolset for software test design, automation and

management. He is coauthor of Integrated Test Design and

Automation, and a frequent speaker at test conferences.

Subu Baskaran has over 11 years of experience in leading large,

complex outsourcing projects both from onsite and offshore. He

has a Bachelor’s degree in electronics and instrumentation

engineering from Sastra University, India, and an MBA from Cass

Business School, London.

Further Reading
A selection of articles from past issues of LogiGear Magazine, dealing with issues of

test automation and Agile

Principles for Agile Test Automation

Emily Bache July 2013

Automation Selection Criteria – Picking the "Right" Candidates

Robert Galen April 2014

Avoid Epic Fail: Get Professional Help

Michael Hackett & Joe Luthy April 2014

Implementing Automated Software Testing

(Book review) Jim Holmes April 2014

Testing Tools: It ain’t Only About Automation!

Michael Hackett April 2014

Is Your Cloud Project Ready to be Agile?

David Taber July 2013

A Practical Guide for Testers and Agile Teams

(Book review) John Turner July 2013

Misconceptions About Test Automation

Hans Buwalda April 2013

Testing Netflix on Android

Amol Kher April 2013

Automation Frameworks & How to Build a Simple One

Karthik KK April 2013

Technical Debt: A Nightmare for Testers

Michael Hackett July 2013

Quantify the Impact of Agile App Development

Larry Maccherone July 2013

http://www.amazon.com/Integrated-Test-Design-Automation-Testframe/dp/0201737256
http://www.amazon.com/Integrated-Test-Design-Automation-Testframe/dp/0201737256
http://www.logigear.com/magazine/issue/past-articles/principles-for-agile-test-automation/
http://www.logigear.com/magazine/automation-test/automation-selection-criteria-%E2%80%93-picking-the-%E2%80%9Cright%E2%80%9D-candidates/
http://www.logigear.com/magazine/automation-test/avoid-epic-fail-get-professional-help/
http://www.logigear.com/magazine/exploratory-testing/book-review-of-implementing-automated-software-testing/
http://www.logigear.com/magazine/automation-test/testing-tools-it-ain%e2%80%99t-only-about-automation/
http://www.logigear.com/magazine/issue/past-articles/is-your-cloud-project-ready-to-be-agile/
http://www.logigear.com/magazine/agile/a-practical-guide-for-testers-and-agile-teams/
http://www.logigear.com/magazine/issue/misconceptions-about-test-automation/
http://www.logigear.com/magazine/automation-test/testing-netflix-on-android/
http://www.logigear.com/magazine/automation-test/2925/
http://www.logigear.com/magazine/agile/technical-debt-a-nightmare-for-testers/
http://www.logigear.com/magazine/agile/quantify-the-impact-of-agile-app-development/

15 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

With this edition of LogiGear Magazine, we

introduce a new feature, Mind Map.

A mind map is a diagram, usually devoted

to a single concept, used to visually

organize related information, often in a

hierarchical or interconnected, web-like

fashion.

This edition’s mind map, created by

Sudhamshu Rao, focuses on tools that are

available to help you in your testing.

The original map, as well as its

downloadable source code, is available

from TestInsane.com.

Sudhamshu Rao is a top notch tester and an ac-

tive participant of Weekend Testing. He has won

testing competitions several times at 99Tests.

 Tools which can help you test better

http://apps.testinsane.com/mindmaps/uploads/html/Testing%20Tools.html
http://apps.testinsane.com/mindmaps/testing-tools-to-test-better
https://testinsane.com/

16 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

A
pplication development and delivery teams are under constant pressure to release quality features as quickly

as possible. CIOs rate delivering applications faster, with higher quality and with strong control on application

development as their key priorities. What’s more, supporting this type of agile environment is particularly

complex to IT teams that are also tasked with supporting multiple, older versions of applications.

Moving faster, with higher quality and stronger control on costs is a common mantra in enterprise application

development and delivery (AD&D) teams today. However, these requirements often pull teams in different

directions. To release things faster, teams often skip various pieces of testing to compress the timelines that result

in costly customer issues later. And conversely, to achieve required quality, teams often have to sacrifice features,

thereby impacting business deliverables. Lastly, in order to achieve business deliverables with the desired quality,

teams tend to be forced to spend a lot, both in resources and people.

To avoid being forced to sacrifice quality for speed, and vice versa, I recommend a 4Cs framework. This framework

eliminates common constraints faced by AD&D teams looking to adopt DevOps practices like continuous integration

and continuous delivery, and helps deliver agility in the cloud. Many enterprises today are adopting this framework

to help them evaluate the variety of tools and resources in the ecosystem to help them deliver business value faster,

with higher quality and lower costs.

In this article, we introduce the 4Cs framework, and use it in the context of four transformations — each addressing

a given set of problems, with an appropriate array of tools for a desired end result — that teams are trying to achieve

in their software delivery pipelines.

By Sumit Mehrotra,

 Skytap

17 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

The 4Cs Framework for the Software Delivery

Lifecycle

The 4Cs framework is a set of simple questions that teams

should ask when evaluating which tools to implement in an

agile software development lifecycle (SDLC) in order to

achieve faster releases, with higher quality and optimal costs.

The 4Cs are:

 Configurability

 Consistency

 Collaboration

 Control

Configurability

The key question to ask here is:

Can I have test environments that capture the complexity of

my application at each stage of testing?

environments: We are talking about multiple development and

test environments that are needed across the SDLC by various

teams.

complexity: We need to capture the complexity of the entire

application. This includes:

 Topology of the application, i.e. multiple networks,

VPN connections, open ports, etc.

 The scale of the application, i.e. size of VMs being

used in RAM, CPU, Storage, the number of VMs, etc.

 The platforms and components being used, i.e. OSs,

middleware, databases, appliances, etc.

application: An enterprise application consists of multiple

components, even products, delivered by different product

teams.

stage: Each stage of testing entails the testing of different ap-

plication components by different teams at different levels

(functional, systems, integration, performance, etc.).

Consistency

The key question to ask here is:

Can I depend on my test environments to be in the exact state

that I need them to be, and whenever I want?

exact state: Consistent test results require testing an applica-

tion in a known state. This includes not just the infrastructure

topology to be in the desired state but also the application (OS

and up) to be configured correctly.

whenever: Being able to test continuously and also as needed

— based on priorities — is key to achieving continuous

integration/continuous delivery and DevOps workflows.

Collaboration

The key question here is:

Can I make it easier for my team (devs + qa + ops) to work

together more productively?

work together: Feedback loops are important for DevOps. Find-

ing bugs, reproducing them quickly, fixing them and verifying

them happens continuously in the SDLC. The shorter and fast-

er these loops are, the more agility there is in the SDLC.

Control

The key question here is:

Can I ensure the right people have the appropriate resources

to do their jobs?

ensure: Being in control of providing resources for AD&D

throughout the SDLC while still servicing the needs of various

development and test teams in a self-service and agile

fashion.

right people: Being able to secure access to the resources, so

that that only teams/users that need access to a set of

resources have access to them. This means being able to

secure your enterprise resources from the outside world.

appropriate resources: Being able use the resources in the

most optimal way— keeping in mind the needs of the AD&D

teams and the budgetary constraints in the organization.

Being able to proactively monitor the usage of resources, and

reactively being able to report on the efficacy and ROI of

resources used.

18 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

Transformations to the SDLC

The picture below depicts a typical SDLC pipeline.

There are 4 stages in this pipeline (NOTE: this is just an

example, there may be more stages in your own pipeline).

 Development stage: Developers and testers are working on

their individual features and automation tools. Developers

from various product teams are checking code into their

feature branches. There is some unit testing happening.

QA teams for a feature are performing functional testing at

a feature level. Multiple teams may be using a set of

shared services as well, comprising centralized services

like source control systems, build services and centralized

databases.

 Integration stage: Code from multiple features gets

integrated and larger scale integration testing is

conducted to ensure the quality of the entire product.

There may be multiple QA teams working on various

aspects of quality of the product in this stage.

 Pre-Production stage: This is the last stage before releas-

ing the product to customers. Typically, the most complex

testing is done in production-like environments, hoping to

weed out complex bugs that can only be found when test-

ing at production scale.

 Production: The final stage, when the product is deployed

for customers. Services are managed by an IT/Ops team,

and release teams manage a boxed product.

As we move from left to right in this pipeline, the following

changes are observed:

 Complexity: Increases from left to right. Complexity of the

application applies to both the topology and the application

configuration. As more and more features come together

and as more intensive tests are

performed, complexity increases.

 Churn: Decreases from left to right. More code is added

more frequently towards the left. More bugs are found and

fixed towards the left. This results in lots of churn in the

application.

 People: Decrease from left to right. There are more devel-

opers and testers touching the application code towards

the left. By contrast, on the other side in production, the

goal is to have as few people touching the application code

and configuration as possible.

With this context, let’s take a look at a set of transformations

targeted for areas of this SDLC pipeline that are ripe for

change. In each transformation we will discuss the problem,

introduce the class of tools at our disposal to address the

issues, and use the 4Cs framework for evaluation.

It is worth mentioning here that we will go through these

transformations in an order, left to right. You may choose to

adopt some or all of these transformations, and in a different

order than discussed here. We indeed have seen customers

take this journey of transformations starting at different

points.

19 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

Transformation 1: On-demand Test Environments

In this transformation, we focus on the individual dev and test

teams on the left.

The problems in this stage are:

 Developers are checking in code and doing unit tests on

their own machines.

 There is no consistency in test environments used by

developers and testers.

 There may be one lab shared between application teams

for running functional tests.

 There are lots of delays between test passes, either due to

lack of environments or due to environments not being

properly configured.

 There is contention between users and teams trying to use

test environments that result in lower quality and delays in

testing.

The tools available for this transformation fall into the

following categories:

 Infrastructure Platforms: In addition to common on-

premise infrastructure management tools, leading cloud

platforms — especially the IaaS portions of those platforms

— are well-suited to provision lab infrastructure on

demand.

 Configuration Management and Deployment tools: These

tools are used to configure software components on top of

raw infrastructure and also to deploy application

components. Examples of such tools are: Chef, Puppet,

Ansible, Salt, UrbanCode, etc.

 Task Management Tools: These tools are used for tracking

work items, bugs, etc. An efficient task management

system is needed to ensure that quality issues don’t fall

through the cracks and that the right people are working

on the right set of work items at any given time.

 Unit Testing: A robust set of unit tests for each piece of

code being checked in is a basic requirement for

continuous delivery and DevOps models. There are various

unit testing platforms available today, like JUnit, NUnit,

Cucumber, etc., that make the task of writing unit tests

easy for development teams.

With the application of these tools, the desired end result is:

 More testing being done by individual developers and test-

ers in consistent environments

 Lower wait times between test passes

 Bugs found, fixed, and validated faster

 Features getting into the integration stage faster and with

a higher level of quality

The 4Cs criteria to evaluate the tools to achieve the end result

are as follows:

Configurability: Give each team or even an individual develop-

er or tester a complete test environment for their component.

Consistency: Create base environments in the desired state

quickly within seconds or minutes. Incremental changes can

be applied on top of this known state and testing can be

efficiently and consistently conducted.

Collaboration: Ability to easily share one’s test environment

with other team members to collaborate on testing and bug

fixing. Ability to share a set of common services like

databases, source control systems, and build servers with

other teams and users.

Control: Ability to provide such test environments whenever

needed, stow away when not in use and rehydrate quickly in a

consistent state, and optimize spending.

20 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

Transformation 2: Continuous Integration

For this transformation, we will place our focus on the integra-

tion stage.

The problems in this stage are:

 Integration environments are typically complex to set up,

so there is only one. Teams forgo doing integration tests at

the feature level and wait to integrate at a much later

stage.

 Integration environment may not run reliably.

 Components integrate infrequently, causing breaks and

integration being blocked for several components.

 Bringing the integration environment to a known good

state takes a long time, thus increasing the time for

feature integration.

 After transformation #1, features are getting into

integration faster but hitting a choke point here.

Along with the tools discussed in transformation #1, there is

an additional class of tools available to set up this

transformation:

Continuous Integration tools: These tools are designed as

workflow engines to make the task of automated integration

testing easier. They can help you set up workflows to track

changes in any feature in the product and run a battery of

tests, from the simplest to the most complex, as needed, to

validate the quality of the change. Tools in this category

include Jenkins, Visual Studio, Teamcity, and Bamboo.

Recently, there have been a host of new service-based tools in

this category — TravisCI, CodeShip, etc. — catering to

applications built on the PaaS model.

Static Analysis tools: These are tools that give you ‘quality for

free’. These tools are designed to weed out bugs just by

analyzing the source code without you having to write any test

cases. These tools can be easily integrated into continuous

integration cycles to improve the quality of the code. Examples

of tools in this category are SonarQube, FxCop, Fortify, and

Parasoft Static Analysis tools.

The desired end result of this transformation is:

 Run automated tests for every check-in, for every feature

in a representative test environment. The test passes are

usually very fast — generally under a couple of minutes —

so the results of each check-in can be communicated

quickly.

 Run a more intensive set of integration tests at a periodic

interval — e.g., daily — on all changes made to the product

since the last run, in a full scale application deployment.

These tests usually take hours, if not days.

 Ability to point out the cause of failure, immediately attrib-

ute the failure to the right person and communicate

enough information (logs, repro, data, etc.) to resolve the

issue quickly.

 This results in early and intensive testing of a large portion

of the application, mostly in an automated fashion.

 The saving of valuable QA time that can be spent on crea-

tive testing areas like exploratory testing.

21 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

The 4Cs criteria to evaluate the tools to achieve the end result

are as follows:

 Configurability – Ability to support a large variety of

continuous integration testing workflows. On one end of

the spectrum are simple one box CI environments where

all application components, at a smaller scale, are

deployed on one machine and the integration test suite is

deployed on it. On the other end of the spectrum are more

complex environments that represent the production-like

deployment of the application, including multiple VM,

networks, external interfaces, VPN connections,

appliances, etc.

 Consistency – The need is to complete the integration runs

as fast as possible, and ensure that they’re of reliable

quality. Each integration run should start off as a brand

new environment that is configured in the base state

required by the test. The latest build is deployed and

configured on top of this base state and tests are run.

 Collaboration – Results of CI runs should be disseminated

to teams quickly, with pointers to builds, results, and test

environments, especially in case of failures.

 Control – Should be able to consume use-and-throw CI

environments and save them off when needed (e.g.

failures). Should be able to scale up the resources needed

for CI based on business needs and scale them down

when required.

Transformation 3: Testing at Production Scale

For this transformation we will focus on the pre-

production stage. However, this transformation can be

applied anywhere in the pipeline. The earlier this type of

testing is done, the better.

The problems in this stage are:

 Teams often have a pre-production environment that is not

up to production standards.

 It is hard to build such an environment, given the

complexity of the application, the scale and the

configuration of the application and data.

 Maintaining such an environment in a consistent state is

hard, given that there are intensive tests being run at this

stage and there are a number of teams that work together

in these environments.

 Product upgrades, even seemingly simple ones like OS

upgrades, can sometimes leave the environments in a

broken state for a long time, delaying product releases.

Along with the tools discussed in Transformations 1 and

2, we should also add the following class of tools to our

arsenal:

 Test Data Management tools: Should be able to create

production-like environments and populate them with data

that is at the scale and state of production. This should be

an easily repeatable process as well.

The desired end result of this transformation is:

 Ability to create production-level environments at any point

in the pipeline

 Ability to create production-like environments in a

consistent state (application and data) and apply product

changes to them

 Run intensive, and even destructive tests in this

environment

 Discover hard-to-find bugs before reaching production

22 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

The 4Cs criteria to evaluate the tools to achieve the end result

are as follows:

 Configurability: Should be able to handle complex network-

ing topologies, access policies, data management, scale of

resource requirements, and monitoring.

 Consistency: Should be able to ensure that pre-production

truly reflects the state of production before each release.

 Collaboration: Should be able to share early access to pre-

production with internal stakeholders, like feature teams,

QA teams, and Ops, as well as external stakeholders like

customers, contractors and partners.

 Control: Should be able to provide access to pre-production

environments when needed and stow away when not need-

ed. Should be able to limit access to certain components

to specific users, teams or departments.

Transformation 4: Parallel Testing

This transformation applies across the SDLC pipeline.

Parallelism can be introduced at any stage in the pipeline to

accelerate the process without compromising quality.

The problem we are trying to address is:

 Needs to allow the business to grow over time. This results

in an increase in products/features being developed and in

the number of people working on them. More components,

more people = more features + more check-ins.

 Single-threaded pipeline (single CI environment, single

staging/pre-prod environment) does not suffice if the team

has to deliver requirements with the same quality in the

same time.

 Teams that are geographically spread end up accessing

single testing environments that may be remote to them.

This creates more inefficiencies in the testing process.

In terms of tools for this transformation, we will discuss a set

of practices that can be implemented with the class of tools

discussed previously:

 Patterns: This deals with using code to create multiple

copies of the same application environment. This includes

infrastructure-as-code and application configuration-as-

code. Combining these produces the complete application

stack needed for testing. This code can be run over and

over again to create environments.

 Clones: This implies cloning an existing application stack

that has been built either manually or with a pattern. The

tools being used for cloning usually take care of the cloning

process without any special knowledge needed by the user

performing the clone.

Both of these practices can be used exclusively or, more

effectively, together in different parts of the SDLC, based

on teams’ needs. Patterns create and validate code that

can be propagated throughout the SDLC and can even

be used for production (continuous delivery). However,

each run can take a long time. Cloning makes the

process much faster and easier for end users (devs and

testers).

The desired end result of this transformation is:

 More feature teams (existing and future) are

onboarded quickly and are productive sooner.

 More features make it through the pipeline and/or

features take less time in the pipeline.

23 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

The 4Cs criteria for evaluation are:

Configurability: Should be able to handle parallel, possibly

identical, environments. E.g., complexity in managing network

address spaces, application components

Consistency: Should be able to ensure that testing is in

environments with a consistent state, especially if the teams

are in different geographic locations throughout the world

Collaboration: Should be able to handle dependency

management of components going through parallel testing

environments

Control: Should provide oversight on resource utilization.

Increased parallelism increases the expenditure on resources

that must be managed judiciously

Transformations at a glance

In summary, we have gone through FOUR transformations to

introduce the following changes into a typical SDLC pipeline:

 On-demand self-service test environments

 Continuous integration and continuous quality

 Earlier testing in production-like environments

 Parallel testing

We have typically seen teams start this journey from two points:

 Testing in production-like environments: Enterprise teams

typically face much difficulty when testing in production-like

circumstances, and they have taken on this problem as the

first step toward transforming their SDLC. Once successful

with the right set of tools, they quickly graduate to parallel-

ism in these production-like environments. Subsequently, as

they become more efficient, they start thinking about

breaking up the monolithic application architecture into

more modular blocks. With these modular components and

modular teams, it becomes easier to equip those teams

with on-demand self-service environments, in order to

implement continuous integration/delivery practices.

24 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

 On-demand, self-service test environments: In this path, teams are usually

on a journey to modularize their application more from a dev/test perspec-

tive than from an IT/Ops perspective. They are implementing continuous

integration/delivery practices earlier in the cycle. Once these practices are

honed, they are promoted to stages and teams further on the right of the

SDLC. Production-like environments are also included in the mix as the

complexity of testing increases.

Each team may take the journey through a different path and with different

tools, but the end goal is always faster, higher, stronger.

Enterprises want to produce business results faster with good ROI. A key

enabler of that is the speed at which software is delivered, the quality at which

it is produced — and the cost incurred. It is important for development and test

teams to think about the ways they can transform their software delivery

lifecycles to achieve those objectives. There is a large ecosystem of patterns,

tools and processes that are available to accomplish that goal. In this paper

we talked about four such transformations, and the 4Cs framework for evalu-

ating the tools that can help you achieve those transformations. ■

Sumit Mehrotra is Sr. Director of Product

Management at Skytap, a role in which he is

responsible for product strategy and

roadmaps.

Prior to Skytap, Sumit worked at Microsoft in

different roles and has shipped a number of

products, including Windows Azure and

Windows operating system.

Sumit holds an MBA from University of

Chicago Booth School of Business and a

Masters in Computer Science from Boston University.

from the staff of LogiGear Magazine

 Happy Holidays

https://www.skytap.com/

25 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

Action Based Testing (ABT)

A refinement of the keyword-driven test approach that pro-

vides a powerful framework for organizing test design, auto-

mation and execution around keywords. In ABT keywords are

called "actions”. Actions are the tasks that are executed dur-

ing a test. Rather than automating an entire test as one long

script, tests are assembled using individual actions.

Unlike traditional test design, which begins with a written nar-

rative that must be interpreted by each tester or automation

engineer, ABT test design takes place in a spreadsheet format

called a test module. Actions, test data and any necessary GUI

interface information are stored in separate files and refer-

enced by the main test module.

Behavior Driven Development (BDD)

A software development methodology in which an application

is specified and designed by describing how its behavior

should appear to an outside observer. BDD combines the

general techniques and principles of test-driven development

(TDD) with ideas from domain-driven design and object-

oriented analysis and design to provide software development

and management teams with shared tools and a shared

process to collaborate on software development.

BDD offers the ability to enlarge the pool of input and

feedback to include business stakeholders and end users who

may have little software development knowledge. Because of

this expanded feedback loop, BDD works well in continuous

integration and continuous delivery environments.

Source: SearchSoftwareQuality

Concurrency

Concurrency refers to multiple things happening at the same

time. In testing, it's all about the fact that your web

application, mobile application, etc., may be required, in a real

world setting, to respond to multiple demands occurring in

parallel. Load testing is the method by which we test to ensure

that an application, and the resources it has to work with, is

equipped to handle the level of concurrency that it can expect

to find in the field.

Continuous Integration (CI)

A software engineering practice in which the changes made by

developers to working copies of code are added to the main-

line code base on a frequent basis, and immediately tested.

The goal is to provide rapid feedback so that, if a defect is

introduced into the mainline, it can be identified quickly and

corrected as soon as possible. Continuous integration soft-

ware tools are often used to automate the testing and build a

document trail. Because CI detects deficiencies early on in

development, defects are typically smaller, less complex, and

easier to resolve. In the end, well-implemented CI reduces the

cost of software development and helps speed time to market.

Source: SearchSoftwareQuality

DevOps

(Term derived from the words “Development” and

“Operations”) A software development practice, grounded in

agile philosophy, that emphasizes close collaboration between

an organization's software developers and other IT profession-

als, while automating the process of software delivery and

infrastructure changes. It aims at establishing a culture and

organizational workflow in which building, testing, and releas-

ing software happens rapidly, frequently, and more reliably.

 Source: Wikipedia

Domain language

 (Also referred to as domain-specific language) A computer

language tailored for a specific application or discipline

(domain). In automated testing, for example, the keyword-

driven approach, such as that which is implemented by

LogiGear's TestArchitect automation tool, allows teams to

develop their own customized domain languages. Such lan-

guages allow for easier implementation of testing scenarios,

and aid in communication between organizational teams.

Refactoring

The process of restructuring existing computer code without

changing its external behavior. From a functional standpoint

(or at least from the standpoint of satisfying existing specifica-

tions) code refactoring should be transparent. Instead, it is the

nonfunctional attributes of the software that are improved.

Code refactoring is considered a form of "hygiene", the

advantages of which include improved readability and reduced

complexity. These in turn can improve source code maintaina-

bility and create a more expressive internal architecture or

object model to improve extensibility.

If done well, code refactoring may also resolve hidden,

dormant, or undiscovered computer bugs or vulnerabilities in

the system by simplifying the underlying logic and eliminating

unnecessary levels of complexity.

Source: Wikipedia ■

The following terms are either found in the accompanying articles,

or are related to concepts relevant to those articles.

http://searchsoftwarequality.techtarget.com/definition/Behavior-driven-development-BDD
http://searchsoftwarequality.techtarget.com/definition/continuous-integration
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/Code_refactoring

26 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

S
oftware testing and verification

needs a careful and diligent

process of impersonating an

end user, trying various usages and

input scenarios, comparing and assert-

ing expected behaviours. Directly, the

words “careful and diligent” invoke the

idea of letting a computer program do

the job. Automating certain program-

mable aspects of your test suite thus

can help software delivery massively.

In most of the projects that I have

worked on, there were aspects of

testing which could be automated, and

then there were some that couldn’t.

Nonetheless, my teams could rely

heavily on our automation suite when

we had one, and expend our energies

manually testing aspects of the

application we could not cover with

automated functional tests. Also, auto-

mating tests helped us immensely to meet customer demands

for quick changes, and subsequently reaching a stage where

every build, even ones with very small changes, went out test-

ed and verified from our stable. As Jez Humble rightly says in

his excellent blog about continuous delivery, automated tests

“take delivery teams beyond basic continuous integration”

and on to the path of continuous delivery. In fact, I believe

they are of such paramount importance, that to prepare your-

self for continuous delivery, you must invest in automation. In

this text, I explain why I believe so.

How much does it cost to make one small

change to production?

As the complexity of software grows, the amount of effort

verifying changes, as well as features already built, grows at

least linearly. This means that testing time is directly

proportional to the number of test cases needed to verify

correctness. Thus, adding new features means that testing

either increases the time it takes a team to deliver software

from the time development is complete, or it adds cost of

delivery if the team adds more testers to cover the increased

work (assuming all testing tasks are independent of each

other). A lot of teams — and I have worked with some — tackle

this by keeping a pool of testers working on “regression”

suites throughout the length of a release, determining whether

new changes break already built functionality. This is not only

costly, its ineffective, slow and error prone.

Automating test scenarios where you can lets you cut the

time/money it takes to verify if a user’s interaction with the

application works as designed. At this point, let us assume

that a reasonable number of your test scenarios can be

automated — say 50% — as this is often the lowest bound in

software projects. If your team can and does automate this set

to a certain number of repeatable tests, it frees up people to

concentrate more on immediate changes. Also, let’s suppose

that it takes as much as three hours to run your tests (it

should take as little as possible — less than 20 minutes even).

This directly impacts the amount of time it takes to push a

build out to customers. By increasing the number of automat-

ed tests, and also investing in getting the test-run time down,

your agility and ability to respond increases massively, while

Why is test automation the backbone of
Continuous Delivery?

The path to continuous delivery leads through automation

By Ranjan Sakalley

http://continuousdelivery.com/

27 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

also reducing the cost. I explain this with some very simple

numbers (taking an average case) below:

Team A

1. Number of scenarios to test: 500 and growing.

2. Time to setup environment for a build: 10 minutes.

3. Time to test one scenario: 10 minutes.

4. Number of testers on your team: 5.

5. Assume that there are no blockers.

If you were to have no automated tests, the amount of time it

would take to test one single check-in (in minutes), is:

 10 + (500*10)/5 = 1010 minutes.

This is close to two working days (standard eight hours each).

Not only is this costly, it means that developers get feedback

two days later. This kind of a setup further encourages

mini-waterfalls in your iteration.

Team B

Same as Team A, but we’ve automated 50% (250 test cases)

of our suite. Also, assume that running these 250 test cases

takes a whopping three hours to complete.

Now, the amount of time it would take to test one single check-

in (in minutes), is:

 task 1 (manual): 10 + (250*10)/5 = 510 minutes.

 task 2 (automated): 10 + 180 minutes.

This is close to one working day. This is not ideal, but just to

prove the fact about reduced cost, we turned around the build

one day earlier. We halved the cost of testing. We also covered

50% of our cases in three hours.

Now to a more ideal and (yet) achievable case:

Team C

Same as Team B, but we threw in some good hardware to run

the tests faster (say 20 minutes), and automated a good 80%

of our tests (10% cannot be automated and 10% is new

functionality).

Now, the amount of time it would take to test one single check-

in (in minutes), is:

 task 1 (manual): 10 + (100*10)/5 = 210 minutes.

 task 2 (automated): 10 + 20 minutes = 30 minutes.

So in effect, we cover 80% of our tests in 30 minutes, and

overall take 3.5 hours to turn around a build. Moreover, we’ve

increased the probability of finding a blocker earlier (by cover-

ing the vast bulk of our cases in 30 minutes), meaning that we

can suspend further manual testing if we need to. Our costs

are lower, we get feedback faster. This changes the game quite

a bit, doesn’t it?

Impossibility of verification on time

Team A that I mentioned above would need 50 testers to

certify a build in under two hours. That cost is, not surprisingly,

unattractive to customers. In most cases, without automation,

it is almost impossible to turn around a build from develop-

ment to delivery within a day. I say almost impossible, as this

would prove to be extremely costly in cases where it is. So,

assuming that my team doesn’t automate and hasn’t got an

infinite amount of money, every time a developer on the team

checks in one line of code, our time to verify a build completely

increases by hours and days. This discourages a manager from

scheduling running these tests every time on every build, which

consequently decreases the quality of coverage for builds, and

ups the amount of time bugs stay in the system. It also, in

some cases I have experienced, dis-incentivizes frequent

checking in of code, which is not healthy.

Early and often feedback

One of the most important aspects of automation is the quick

feedback that a team gets from a build process. Every check-in

is tested without prejudice, and the team gets a report card as

soon as it can. Getting quicker feedback means that less code

gets built on top of buggy code, which in turn increases the

credibility of the software. To extend the example of teams A, B

28 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

and C above:

For Team A: The probability of finding a blocker on day one is

1/2. Which basically means that there is a good risk of finding

a bug on the second day of testing, which completely lays the

first days of work to waste. That blocker would need to be fixed,

and all the tests re-verified. In the worst case, a bug is found

after two days of an inclement line of code getting checked-in.

For Team B: The worst case is that you find a blocker in the last

few hours of the day. This is still much better than for Team A.

Better still, as 50% of test cases are automated, the chance of

finding a blocker within three hours is very high (50%). This

quick feedback lets you find and fix issues faster, and

therefore respond to customer requests very quickly.

For Team C: The best case of all three. The worst-case scenario

is that Team C will know after three hours if they checked-in a

blocker. As 80% of test cases are automated, by 20 minutes,

they would know that they made a mistake. They have come a

long way from where Team A is — 20 minutes is way better

than two days!

Opportunity cost

Economists use an apt term –

opportunity cost – to define

what is lost if one choice

amongst many is taken. The

opportunity cost of re-verifying

tedious test cases build after

build is the loss of time spent

on exploratory testing. More

often than not, a bug leads to

many, but by concentrating on

manual scenarios, and while

catching up to do so, testers

hardly find any time to create

new scenarios and follow up on

issues. Not only this, it is

a given that by concentrating on

regression tests all the time, testers spend proportionately less

time on newer features, where there is a higher probability of

bugs to be found. By automating as much as possible, a team

can free up testers to be more creative and explore an

application from the “human angle” and thus increase the

depth of coverage and quality. On projects I have worked on,

whenever we have had automated tests aiding manual testing,

I have noticed better and more in-depth testing which, has

resulted in better quality.

Another disadvantage to manual testing is that it involves

tedious re-verification of the same cases day after day. Even if

managers are creative and distribute tests to different people

every day, the cycle inadvertently repeats after a short period

of time. Testers have less time to be creative, and therefore

their jobs less gratifying. Testers are creative beings and their

forte is to act as end-users and find new ways to test and break

an application, not in repeating a set process time after time.

Without automation, the opportunity cost in terms of keeping

and satisfying the best testers around is enormous.

Error prone human behavior

Believe it or not, even the best of us are prone to making

mistakes doing our day to day jobs. Given how good or bad we

are it, the probability of making a mistake while working is

higher or lower, but mostly a number greater than zero. It is

important to keep this risk in mind while ascertaining the

quality of a build. Indeed, human errors lead to a majority of

bugs in software applications — errors that may occur during

development and/or testing.

Computers are extremely efficient at doing repetitive tasks.

They are diligent and careful, which makes automation a risk

mitigation strategy.

Tests as executable

documentation

Test scenarios provide an

excellent source of knowledge

about the state of an applica-

tion. Manual test results provide

a good view of what an applica-

tion can do for an end user, and

also tell the development team

about quirky components in

their code. There are two

components to documenting

test results – showing what an

application can do and, upon failures, documenting what fails

and how, so it’s easy to manage application abnormalities. If

testers are diligent and make sure they keep their documenta-

tion up to date (another overhead for them), it is possible to

know the state of play through a glance at test results. The

amount of work increases drastically with failures, as testers

then need to document each step, take screenshots, maybe

even videos of crash situations. Adding the time spent on these

increases the cost of making changes; in fact, in a way, the

added cost disincentivizes documenting the state with every

release.

29 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

With automated tests, and by choosing the right tools, the

process of documenting the state of an application becomes a

very low-cost affair. Automated testing tools provide a very

good way of executing tests, collating results in categories, and

publishing results to a web page, and also let you visualize test

result data to monitor progress and get relevant feedback from

the tests. With tools like Twist, Concordian, Cucumber and the

lot, it becomes really easy to show your test results, even

authoring, to your customers, and this reduces the losses in

translation, with the added benefit of the customer getting

more involved in the application’s development. For failures, a

multitude of testing tools automate the process of taking

screenshots, even videos, to document failures and errors in a

more meaningful way. Results could be mailed to people, much

better served as RSS feeds per build to interested parties.

Technology facing tests

Testing non-functional aspects of an application – like testing

application performance upon a user action, testing latency

over a network and its effect on an end-user’s interaction with

the application, etc. — have traditionally been partially

automated (although, very early during my work life, I have sat

with a stop watch in hand to test performance — low-fi but

effective!) It is easy to take advantage of automated tests and

reuse them to test such non-functional aspects. For example,

running an automated functional test over a number of times

can tell you the average performance of an action on your

web-page. The model is easy to set up: put a number of your

automated functional tests inside a chosen framework that

lets you set up and probe non-functional properties while the

tests are run. Testing and monitoring aspects like role-based

security, effects of latency, query performance, etc., can all be

automated by reusing an existing set of automated tests — an

added benefit.

Conclusion

On your journey to Continuous Delivery, you have to take many

steps, both small and large. My understanding and suggestion

would be to start small, with a good investment in a robust

automation suite, give it your best people, cultivate habits in

your team that respect tests and results, build this backbone

first, and then off you go. Have a smooth ride! ■

This article originally appeared in blog.ranjansakalley.com.

Ranjan Sakalley is a lead developer & software architect

with ThoughtWorks who "likes writing code and working with

great people". In his career he has worn varied hats, and in

particular enjoys being an agile

coach and project manager.

His interests include software

architecture, leading teams to deliv-

er better, being a hands-on lead, C#,

Java, Ruby, javascript, Agile, XP, TDD,

Story analysis, and Continuous

Delivery, among others.

http://blog.ranjansakalley.com/2011/08/why-is-test-automation-the-backbone-of.html
http://blog.ranjansakalley.com
https://www.thoughtworks.com/

30 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

I
 got so much out of this book, and my tool belt expanded

significantly. I really like the approach of these short,

focused, one-topic books, starting with Gojko’s book

on impact mapping. They don’t promise to be deep dives and

total coverage, but rather to give you ideas (well… that’s in the

title even), be challenged, and investigate further.

In this book on testing, they have divided the ideas into four

groups, brushing on different aspects of testing:

 Generating test ideas

 Designing good checks

 Improving testability

 Managing large test suites

One of the things that struck me is how far (agile) testing has

progressed during my relatively short period of interest in the

field. This is a very sober and concrete look at the new breed

of testers that want to be part in design, that takes failed tests

as an opportunity to learn. We have sections on measuring

test half times (how often do test change) in order to focus our

testing efforts, and suggestions for how to involve and inform

business users directly in the creation of key examples, etc.

This is not your father’s testing... and I like it!

The early parts of this book touch more on organization of test

efforts and exploratory testing, etc. There’s a lot of good things

in there, but it’s not my area of expertise and interest.

The two last parts I found extremely interesting and packed

with battled-hardened experiences that I sometimes found

myself nodding in agreement with. And sometimes I had to

reread paragraphs a few times because it was really a new

take on a situation I’ve been in.

And that’s typically how you get the experiences from experts

served. Some things you have experienced yourself and others

are things that help your knowledge to take a jump ahead.

Everything that I didn’t know about before left me feeling that I

wanted more pages on the topic. Or examples on how to

implement this or that, although every Idea has a “How to

make it work” section that gives you a starter.

This is by design.

The book is not meant to be a complete overview. You should,

as they point out in the intro, not read this as your first book.

And, I might add: you should not read the entire book in one

go. I would suggest that you browse this book for an overview

and general knowledge and then use it as a tool, hands-on, in

your team. Keep it next to your team, and as you run into

problems, look them up in the book. There are a lot of pointers

and ideas that can help you get under control many, if not all,

of the testing problems I’ve seen teams run into.

I could not recommend the book more. Any serious agile tester

should have this handy to be inspired to move even further.

Thank you, Neuri “Publishing” — looking forward to the next

book. On retrospectives.

P.S. Were you the guys behind ‘50 Shades of Grey’ too? ■

50 Quick Ideas to Improve Your Tests - a review
By Marcus Hammarberg

They’ve done it again. Gojko Adzic, David Evans and, in this book, Tom Roden, have written another ‘50 Quick Ideas’ book.

And this one is equally as good as the previous book on user stories. If not even better.

This review originally appeared in the author’s blog, marcusoft.net.

Marcus Hammarberg, the author of

Kanban in Action, is a programmer,

consultant and agile coach who has

worked for a number of banks and

insurance companies, as well as Ebay

and Spotify. At present, he is espe-

cially jazzed about Node and Koa Js.

Currently, Marcus lives with his family

in Indonesia, where he works for the Salvation Army.

Marcus can be reached on Twitter at @marcusoftnet.

Please Note: Readers of LogiGear Magazine are entitled to a

50% discount on the Ebook version of this book when they use the

LogiGear discount code through March 31, 2016.

https://leanpub.com/50quickideas-tests/c/logigear
http://gojko.net/
https://twitter.com/davidevans66
https://twitter.com/TommRoden
http://www.marcusoft.net/2015/05/-quick-ideas-to-improve-your-tests---a-review.html
http://www.marcusoft.net/
http://www.amazon.com/Kanban-Action-Marcus-Hammarberg/dp/1617291056/
https://leanpub.com/50quickideas-tests/c/logigear

31 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

Software Quality Days January 18-21 Vienna, Austria

Europe’s leading conference on Software Quality

European Testing Conference 2016 February 11-12 Bucharest, Romania

A conference about getting experts and practitioners together to talk, learn and practice the art of

testing. Looks into advanced new methods of making testing more effective, and enriching under-

standing of fundamental methods to grow a stronger community.

DeveloperWeek February 12-18 San Francisco, USA

San Francisco’s largest tech event series with over 60 week-long events including the DeveloperWeek

2016 Conference & Expo, DevOps Summit, WebRTC Summit, LearnToCode Camp, 1,000+ attendee

hackathon, 1,000+ attendee tech hiring mixer, and a series of workshops, open houses, drink-ups, and

city-wide events across San Francisco.

SOFTENG 2016 - Intl. Conf. on Advances and

Trends in Software Engineering

February 21-25 Lisbon, Portugal

Part of NexComm 2016 - A gathering of multiple co-located conferences in Lisbon

EMBEDDED 2016 - The International Symposium on

Advances in Embedded Systems and Applica-

tions

February 21-25 Lisbon, Portugal

Part of NexComm 2016 - A gathering of multiple co-located conferences in Lisbon

CTRQ 2016 - The Ninth International Conference

on Communication Theory, Reliability, and Quality

of Service

February 21-25 Lisbon, Portugal

Part of NexComm 2016 - A gathering of multiple co-located conferences in Lisbon

ICONS 2016 - The Eleventh International Confer-

ence on Systems

February 21-25 Lisbon, Portugal

Part of NexComm 2016 - A gathering of multiple co-located conferences in Lisbon

Lean and Six Sigma Conference February 29 –

March 1

Phoenix, AZ, USA

A conference for those with technical proficiencies and leadership responsibilities who are actively in-

volved in process improvement, organizational change, and development dynamics related to a suc-

cessful lean and Six Sigma culture.

CQSDI — Collaboration on Quality in the Space

and Defense Industry Forum

March 7-8 Cape Canaveral, USA

If you work with an organization that is involved in the space and defense industry, this event will be

your most important and rewarding professional experience for 2016. It includes government and indus-

North Jersey ASQ Spring Quality Conference 2016 March 24 Whippany, NJ, USA

“The Global Quality Marches On”

Upcoming software test-related conferences planned through March 2016

31 DECEMBER 2015 | VOL IX | ISSUE 4 WWW.LOGIGEARMAGAZINE.COM

http://www.software-quality-days.com/en/
http://europeantestingconference.eu/
http://www.developerweek.com/
http://www.iaria.org/conferences2016/SOFTENG16.html
http://www.iaria.org/conferences2016/SOFTENG16.html
http://www.iaria.org/conferences2016/EMBEDDED.html
http://www.iaria.org/conferences2016/EMBEDDED.html
http://www.iaria.org/conferences2016/EMBEDDED.html
http://www.iaria.org/conferences2016/CTRQ16.html
http://www.iaria.org/conferences2016/CTRQ16.html
http://www.iaria.org/conferences2016/CTRQ16.html
http://www.iaria.org/conferences2016/ICONS16.html
http://www.iaria.org/conferences2016/ICONS16.html
http://asq.org/conferences/six-sigma/
http://asq.org/conferences/aviation-space-defense/index.html
http://asq.org/conferences/aviation-space-defense/index.html
springqualityconf.org

LOGIGEAR MAGAZINE

DECEMBER 2015 VOL IX ISSUE 4

